Addendum to "On the Generalized Linear Equivalence of Functions over Finite Fields"
نویسنده
چکیده
In this paper we discuss the example of APN permutation introduced in the paper “On the Generalized Linear Equivalence of Functions over Finite Fields” [1], presented at Asiacrypt 2004. We show that, although the method used to derive the function is correct, the permutation given in [1] is classically linearly equivalent to a power monomial. We therefore use the same method here to generate other APN permutations that are generally, but not classically, linearly equivalent to power monomials.
منابع مشابه
On the Generalized Linear Equivalence of Functions Over Finite Fields
In this paper we introduce the concept of generalized linear equivalence between functions defined over finite fields; this can be seen as an extension of the classical criterion of linear equivalence, and it is obtained by means of a particular geometric representation of the functions. After giving the basic definitions, we prove that the known equivalence relations can be seen as particular ...
متن کاملClassical wavelet systems over finite fields
This article presents an analytic approach to study admissibility conditions related to classical full wavelet systems over finite fields using tools from computational harmonic analysis and theoretical linear algebra. It is shown that for a large class of non-zero window signals (wavelets), the generated classical full wavelet systems constitute a frame whose canonical dual are classical full ...
متن کاملOn the topological equivalence of some generalized metric spaces
The aim of this paper is to establish the equivalence between the concepts of an $S$-metric space and a cone $S$-metric space using some topological approaches. We introduce a new notion of a $TVS$-cone $S$-metric space using some facts about topological vector spaces. We see that the known results on cone $S$-metric spaces (or $N$-cone metric spaces) can be directly obtained from...
متن کاملClassical Wavelet Transforms over Finite Fields
This article introduces a systematic study for computational aspects of classical wavelet transforms over finite fields using tools from computational harmonic analysis and also theoretical linear algebra. We present a concrete formulation for the Frobenius norm of the classical wavelet transforms over finite fields. It is shown that each vector defined over a finite field can be represented as...
متن کاملFinite iterative methods for solving systems of linear matrix equations over reflexive and anti-reflexive matrices
A matrix $Pintextmd{C}^{ntimes n}$ is called a generalized reflection matrix if $P^{H}=P$ and $P^{2}=I$. An $ntimes n$ complex matrix $A$ is said to be a reflexive (anti-reflexive) matrix with respect to the generalized reflection matrix $P$ if $A=PAP$ ($A=-PAP$). In this paper, we introduce two iterative methods for solving the pair of matrix equations $AXB=C$ and $DXE=F$ over reflexiv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2004 شماره
صفحات -
تاریخ انتشار 2004